Barycentric-sum problems: a survey

نویسندگان

  • Oscar Ordaz
  • Domingo Quiroz
چکیده

Let G be a finite abelian group. A sequence in G is barycentric if it contains one element “average” of its terms. We give a survey of results and open problems concerning sufficient conditions for the existence of barycentric sequences. Moreover values and open problems on the k-barycentric Davenport constant BD(k, G), the barycentric Davenport constant BD(G), the strong k-barycentric Davenport constant SBD(k, G) and barycentric Ramsey numbers BR(H, G) for some graphs H are presented. These constants are related to the Davenport constant D(G).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Barycentric Constants

Let G be an abelian group with n elements. Let S be a sequence of elements of G, where the repetition of elements is allowed. Let |S| be the cardinality, or the length of S. A sequence S ⊆ G with |S| ≥ 2 is barycentric or has a barycentric-sum if it contains one element aj such that ∑ ai∈S ai = |S|aj . This paper is a survey on the following three barycentric constants: the k-barycentric Olson ...

متن کامل

Some remarks on barycentric-sum problems over cyclic groups

We derive some new results on the k-th barycentric Olson constants of abelian groups (mainly cyclic). This quantity, for a finite abelian (additive) group (G,+), is defined as the smallest integer l such that each subset A of G with at least l elements contains a subset with k elements {g1, . . . , gk} satisfying g1 + · · ·+ gk = k gj for some 1 ≤ j ≤ k.

متن کامل

Ergodic Convergence to a Zero of the Extended Sum

In this note we show that the splitting scheme of Passty [7] as well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we extend the convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we ...

متن کامل

Modes, Modals, and Barycentric Algebras: a Brief Survey and an Additivity Theorem

Modes are idempotent and entropic algebras. Modals are both join semilattices and modes, where the mode structure distributes over the join. Barycentric algebras are equipped with binary operations from the open unit interval, satisfying idempotence, skew-commutativity, and skew-associativity. The article aims to give a brief survey of these structures and some of their applications. Special at...

متن کامل

On polynomial and barycentric interpolations

The present survey collects some recent results on barycentric interpolation showing the similarity to the corresponding Lagrange (or polynomial) theorems. Namely we state that the order of the Lebesgue constant for barycentric interpolation is at least log n; we state a Grünwald–Marcinkiewicz type theorem for the barycentric case; moreover we define a Bernstein type process for the barycentric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008